Modified Zinc Oxide Nanoparticles for Corrosion Resistance Applications

Author:

Ali Dad Chandio Ali Dad Chandio,Muhammad Hamza Saleem Muhammad Hamza Saleem,Hasan Raza Khan Hasan Raza Khan,Iqra Naeem Hyder and Maryam Ali Iqra Naeem Hyder and Maryam Ali

Abstract

Atmospheric corrosion is a big threat to the steel structures. This is because it compromises its structural integrity, aesthetic aspects and overall efficiency. An attempt has been made to counteract this through surface engineering of substrates including glass and steel by using modified zinc oxide nanoparticles to increase hydrophobicity. The synthesis of zinc oxide nanoparticles is carried out by using sol-gel method, thereafter these particles were modified by using stearic acid; a fatty acid. The zinc oxide nanoparticles were characterized by using X-ray diffraction analysis (XRD) which confirms the presence of hexagonal wurtzite structure. Moreover, the Scanning Electron microscopy (SEM) reveals the hexagonal wurtzite morphology of as prepared nanoparticles. Fourier transform infrared spectroscopy (FTIR) confirms the grafting of stearic acid on the surface of ZnO in bidentate form. The water Contact Angle obtained by using sessile drop method gives a statistical value of 140o which is of great interest due to higher water repellency and lower surface contact area. Finally, corrosion test was carried out on the coated steel substrate by means of conventional corrosion testing technique and it is observed that the coated sample decays three times slower than that of its bare steel counterpart.

Publisher

Chemical Society of Pakistan

Subject

General Chemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Synthesis of zinc oxide nanoparticle as corrosion resistance of steel metal;THE 9TH INTERNATIONAL CONFERENCE OF THE INDONESIAN CHEMICAL SOCIETY ICICS 2021: Toward a Meaningful Society;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3