Baitouweng decoction suppresses growth of esophageal carcinoma cells through miR-495-3p/BUB1/STAT3 axis

Author:

Yang Hui,Chen Xiao-Wei,Song Xue-Jie,Du Hai-Yang,Si Fu-Chun

Abstract

BACKGROUND Esophageal carcinoma (EC) is one of the most prevalent cancers in human populations worldwide. Baitouweng decoction is one of the most important Chinese medicine formulas, with the potential to treat cancer. AIM To investigate the role and mechanism of Baitouweng decoction on EC cells. METHODS Differentially expressed genes (DEGs) in EC tissues and normal tissues were screened by the cDNA microarray technique and by bioinformatics methods. The target genes of microRNAs were predicted based on the TargetScan database and verified by dual luciferase gene reporter assay. We used Baitouweng decoction to intervene EC cells, and detected the activity of EC9706 and KYSE150 cells by the MTT method. Cell cycle and apoptosis were measured by flow cytometry. The expression of BUB1 mRNA and miR-495-3p was measured by qRT-PCR. The protein levels of BUB1, STAT3, p-STAT3, CCNB1, CDK1, Bax, Caspase3, and Caspase9 were measured by Western blot analysis. The migration and invasion abilities of the cells were measured by wound-healing assay and Transwell invasion assay, respectively. RESULTS DEGs identified are involved in biological processes, signaling pathways, and network construction, which are mainly related to mitosis. BUB1 was the key hub gene, and it is also a target gene of miR-495-3p. Baitouweng decoction could upregulate miR-495-3p and inhibit BUB1 expression. In vitro experiments showed that Baitouweng decoction significantly inhibited the migration and invasion of EC cells and induced apoptosis and G2/M phase arrest. After treatment with Baitouweng decoction, the expression of Bax, Caspase 3, and Caspase 9 in EC cells increased significantly, while the expression of BUB1, CCNB1, and CDK1 decreased significantly. Moreover, the STAT3 signaling pathway may play an important role in this process. CONCLUSION Baitouweng decoction has a significant inhibitory effect on EC cell growth. BUB1 is a potential therapeutic target for EC. Further analysis showed that Baitouweng decoction may inhibit the growth of EC cells by upregulating miR-495-3p targeting the BUB1-mediated STAT3 signal pathway.

Publisher

Baishideng Publishing Group Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3