Integrated single-cell and bulk RNA sequencing revealed an epigenetic signature predicts prognosis and tumor microenvironment colorectal cancer heterogeneity

Author:

Liu Han-Xuan,Feng Jie,Jiang Jing-Jing,Shen Wan-Jun,Zheng Yu,Liu Gang,Gao Xiang-Yang

Abstract

BACKGROUND Colorectal cancer (CRC) prognosis prediction is currently a major challenge. Epigenetic regulation has been widely reported for its role in cancer development. AIM To construct a robust prognostic signature, we used developed and validated across datasets. METHODS After constructing the signature, the prognostic value of the signature was evaluated in the TCGA cohort and six independent datasets (GSE17526, GSE17537, GSE33113, GSE37892, GSE39048 and GSE39582). The clinical, genomic and transcriptomic features related to the signature were identified. The correlations of the signature score with immune cell infiltration and cell-cell interactions were analyzed. The correlations between the signature score and the sensitivity to different drugs were also predicted. RESULTS In the TCGA cohort, patients in the low-risk group according to the signature score had longer survival than those in the high-risk group, and this finding was validated in the validation datasets. The signature was a prognostic factor independent of age and sex and was correlated with stage and PD-1 /PD-L1 expression. Area under the receiving operating characteristic curve was 0.72. Genomic association analyses revealed that samples from high-risk patients exhibited chromosomal instability. Transcriptomic analyses revealed that the signature score was significantly associated with multiple cellular pathways. Bulk RNA-seq and single-cell sequencing data revealed that the signature reflected differences in infiltrating immune cell-tumor cell interactions, especially for macrophages. The signature also predicted the putative drug sensitivity of CRC samples. CONCLUSION The signature is a valuable biomarker for predicting CRC prognosis and reflects multiple features of CRC, especially macrophage infiltration in the microenvironment.

Publisher

Baishideng Publishing Group Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3