Human bone marrow mesenchymal stem cell-derived exosomes loaded with gemcitabine inhibit pancreatic cancer cell proliferation by enhancing apoptosis

Author:

Tang Zu-Gui,Chen Tie-Mei,Lu Yi,Wang Zhe,Wang Xi-Cheng,Kong Yi

Abstract

BACKGROUND Pancreatic cancer remains one of the most lethal malignancies, and has limited effective treatment. Gemcitabine (GEM), a chemotherapeutic agent, is commonly used for clinical treatment of pancreatic cancer, but it has characteristics of low drug delivery efficiency and significant side effects. The study tested the hypothesis that human bone marrow mesenchymal stem cell (MSC)-derived exosomes loaded with GEM (Exo-GEM) would have a higher cytotoxicity against human pancreatic cancer cells by enhancing their apoptosis. AIM To investigate the cytotoxicity of MSC-derived Exo-GEM against pancreatic cancer cells in vitro . METHODS Exosomes were isolated from MSCs and characterized by transmission electron microscopy and nanoparticle tracking analysis. Exo-GEM through electroporation, sonication, or incubation, and the loading efficiency was evaluated. The cytotoxicity of Exo-GEM or GEM alone against human pancreatic cancer Panc-1 and MiaPaca-2 cells was assessed by MTT and flow cytometry assays. RESULTS The isolated exosomes had an average size of 76.7 nm. The encapsulation efficacy and loading efficiency of GEM by electroporation and sonication were similar and significantly better than incubation. The cytotoxicity of Exo-GEM against pancreatic cancer cells was stronger than free GEM and treatment with 0.02 μM Exo-GEM significantly reduced the viability of both Panc-1 and MiaPaca-2 cells. Moreover, Exo-GEM enhanced the frequency of GEM-induced apoptosis in both cell lines. CONCLUSION Human bone marrow MSC-derived Exo-GEM have a potent cytotoxicity against human pancreatic cancer cells by enhancing their apoptosis, offering a promising drug delivery system for improving therapeutic outcomes.

Publisher

Baishideng Publishing Group Inc.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3