An algorithm to predict the need for invasive mechanical ventilation in hospitalized COVID-19 patients: the experience in Sao Paulo

Author:

Osawa Eduardo AtsushiORCID,Maciel Alexandre ToledoORCID

Abstract

Background: We aimed to characterize patients hospitalized for coronavirus disease 2019 (COVID-19) and identify predictors of invasive mechanical ventilation (IMV). Methods: We performed a retrospective cohort study in patients with COVID-19 admitted to a private network in Sao Paulo, Brazil from March to October 2020. Patients were compared in three subgroups: non-intensive care unit (ICU) admission (group A), ICU admission without receiving IMV (group B) and IMV requirement (group C). We developed logistic regression algorithm to identify predictors of IMV. Results: We analyzed 1,650 patients, the median age was 53 years (range, 42–65) and 986 patients (59.8%) were male. The median duration from symptom onset to hospital admission was 7 days (5–9) and the main comorbidities were hypertension (42.4%), diabetes (24.2%) and obesity (15.8%). We found differences among subgroups in laboratory values obtained at hospital admission. The predictors of IMV (odds ratio and 95% confidence interval [CI]) were male (1.81 [1.11–2.94], P=0.018), age (1.03 [1.02–1.05], P<0.001), obesity (2.56 [1.57–4.15], P<0.001), duration from symptom onset to admission (0.91 [0.85–0.98], P=0.011), arterial oxygen saturation (0.95 [0.92–0.99], P=0.012), C-reactive protein (1.005 [1.002–1.008], P<0.001), neutrophil-to-lymphocyte ratio (1.046 [1.005–1.089], P=0.029) and lactate dehydrogenase (1.005 [1.003–1.007], P<0.001). The area under the curve values were 0.860 (95% CI, 0.829–0.892) in the development cohort and 0.801 (95% CI, 0.733–0.870) in the validation cohort.Conclusions: Patients had distinct clinical and laboratory parameters early in hospital admission. Our prediction model may enable focused care in patients at high risk of IMV.

Publisher

The Korean Society of Critical Care Medicine

Subject

Critical Care and Intensive Care Medicine,Critical Care Nursing

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3