Abstract
This research aims to explore the effectiveness of adaptive learning systems in dynamically modifying content to align with the abilities and knowledge levels of individual learners. By employing data analytics and machine learning algorithms, the study examines how content difficulty adjustment, pacing, content selection, and adaptive feedback contribute to a personalized learning experience. This study embarked on an exploration of the efficacy and implications of adaptive learning systems across diverse educational settings: K-12 classrooms, higher educational institutions, and corporate training environments. Through a multi-modal approach, incorporating both quantitative and qualitative analyses, the study evaluated the potential benefits and transformative impact of these personalized learning tools. Quantitatively, results indicated marked improvements post-intervention: notably, a rise in completion rates, significant enhancement in test scores, and increased engagement durations. Machine learning analyses further revealed patterns among learners, signifying segments that benefited immensely from the intervention. Qualitative feedback, obtained through semi-structured interviews, painted a compelling narrative of learner experiences. Common themes emphasized the system's adeptness at adjusting difficulty, facilitating personalized pacing, and providing nuanced, constructive feedback. Adaptive learning systems emerge as a potent tool in modern educational strategies, blending technology and pedagogy to deliver a tailored, responsive learning experience. However, while the immediate implications are promising, the broader applicability and long-term outcomes warrant further research. This study serves as a foundational exploration, signaling the transformative potential of adaptive learning in reshaping educational landscapes.
Publisher
Centro Universitario La Salle - UNILASALLE
Subject
Management of Technology and Innovation
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Machine Learning in Adaptive Online Learning for Enhanced Learner Engagement;Advances in Educational Technologies and Instructional Design;2023-12-29