Neutrosophic Generalized Exponential Robust Ratio Type Estimators

Author:

Raghav Yashpal Singh

Abstract

Estimators proposed under classical statistics fail if data are vague or indeterminate. Neutrosophic Statistics are the only alternative because its deal with indeterminacy. Extensive reserch has been conducted in this field because of its wide applicability. This study aimed to further develop the theory of neutosophic simple random sampling without replacement. In this study, a generalized neutrosophic exponential robust ratio-type estimator was proposed, and five of its member neutrosophic estimators were developed. Derivations of  the bias and Mean Square Error were provided up to the first-order approximation. To demonstrate the high efficiency of the proposed neutrosophic estimators an empirical study on the stock price of Moderna and four simulation studies have been conducted, and the results show that the proposed neutrosophic estimators are more efficient than similar existing ratio type estimators discussed in this paper in neutrosophic as well as classical forms.

Publisher

SCIK Publishing Corporation

Subject

Applied Mathematics,Geometry and Topology,Business and International Management,Analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3