Abstract
This research employs remote sensing techniques to map agricultural drought in the Constantine region of Algeria during the years 2021 to 2023. Using Landsat images processed through the Google Earth Engine platform, three indices (NDVI, VHI, and SPI) were calculated. The findings indicate deterioration in both climatic conditions and vegetation health. Specifically, NDVI and SPI exhibit decreases, while VHI shows an increase, signaling heightened water stress. The inverse relationship between NDVI and VHI underscores the connection between water availability and vegetation health. Additionally, a detailed analysis reveals severe drought conditions in the Southwestern part of the region. This study showcases the value of utilizing remote sensing technology on the Google Earth Engine platform for monitoring climate and vegetation patterns over space and time. These insights can help in forecasting the effects of climate change on agriculture and inform the adoption of suitable strategies to ensure food security.
Publisher
Journal of Design for Resilience in Architecture & Planning
Reference18 articles.
1. Acharki, S., Singh, S. K., do Couto, E. V., Arjdal, Y., & Elbeltagi, A. (2023). Spatio-temporal distribution and prediction of agricultural and meteorological drought in a Mediterranean coastal watershed via GIS and machine learning. Physics and Chemistry of the Earth, Parts A/B/C, 103425. https://doi.org/https://doi.org/10.1016/j.pce.2023.103425.
2. Andrieu, J. (2008). Cartographie Par Télédétection Végétale Sur La Bande Littorale Ouest-Africaine : Exemple Des Rivières Du Sud Du Delta Du Saloum ( Sénégal ) Au Rio Geba ( Guinée-Bissau ). Revue Télédetection, 8(2), 93-118. https://shs.hal.science/halshs-00388170.
3. Bento, V. A., Gouveia, C. M., DaCamara, C. C., & Trigo, I. F. (2018). A climatological assessment of drought impact on vegetation health index. Agricultural and forest meteorology, 259, 286-295. https://doi.org/10.1016/j.agrformet.2018.05.014.
4. Clarke, K. R., Chapman, M. G., Somerfield, P. J., & Needham, H. R. (2006). Dispersion-based weighting of species counts in assemblage analyses. Marine Ecology Progress Series, 320, 11-27. https://www.int-res.com/abstracts/meps/v320/p11-27/.
5. Diédhiou, I., Mering, C., Sy, O., & Sané, T. (2020). Cartographier par télédétection l’occupation du sol et ses changements. EchoGéo, (54), 0-41. https://doi.org/10.4000/echogeo.20510.