Design of a Reconfigurable Band-notched Wideband Antenna using EBG Structures

Author:

Zhang Xiaoyan,Li Ziao,Zhan Aiyun,Mei Yan

Abstract

A compact WLAN band-notched reconfigurable wideband antenna using two mushroom-like electromagnetic band-gap (EBG) structures is proposed in this paper. It is designed based on a dual wideband microstrip feed patch antenna with operating frequency bands of 2.2-3.7 GHz and 4.8-6 GHz. One of the EBG cells is positioned alongside the feed line, while the other EBG cell is laid on the back of the substrate. The patch or ground of the two EBG units are fed with a stronger current through a ground slot and a parasitic stub respectively, and the connections between the EBG structures and the antenna are controlled by loading a PIN diode with two 56 pF DC blocking capacitors. The advantage of this proposed design is that the antenna and the EBG unit can be designed independently. The proposed antenna has an overall size of 35×46×1.6 mm3. When testing the S11 of the antenna, the influence of the bias circuit on the antenna is also considered. The measured results show that the proposed antenna can generate two notched bands of 2.3-2.49 GHz and 5.11-5.51 GHz of WLAN, and the realized gain in the notch bands can be reduced to -2.65 dBi and -4.55 dBi, respectively, demonstrating its anti-interference characteristics, and can be applied in band notch broadband communication systems or anti-interference communication equipments such as unmanned aerial vehicles and radars.

Publisher

River Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3