Design and Evaluation of Ultra-broadband Metamaterial Absorber for Energy Harvesting Applications

Author:

Abishek Ebenezer,Azhagar Elakkiya,Esakkimuthu Manikandan,Arumugam Karthigeyan

Abstract

A perfect metamaterial absorber (MMA) is designed and evaluated numerically for solar energy harvesting applications. A dielectric layer separates the top structured metallic plane and the bottom ground metallic plane that make up the MMA. The MMA structure is primarily presented in the range of 100-1000 THz, which corresponds to 3000-300 nm in wavelength, for the efficient utilization of solar energy. The results obtained in the band 441-998 THz correspond to a visible and ultraviolet wavelength range of 680-300 nm. It has achieved a maximum absorption rate of 99.9% at 700 THz and 99% between 500 and 800 THz, respectively. In the desired frequency bands, the structure has achieved polarization and angle-resolved behavior. The MMA-based absorber has a high absorption rate of over 90% in the broadest visible (400-700 nm) and UV (100-300 nm) spectra. Also shown are the absorption characteristics of the MMA-based solar cell in the infrared (IR) region. The band 345-440 THz, corresponding to 870-690 nm, has 75% absorption. The other IR band (240-345 THz), which corresponds to 1250-880 nm, has achieved absorption of nearly 50%. So it can be utilized for the entire visible solar spectrum, including infrared to ultraviolet. If the proposed MMA structure were equipped with the appropriate electrical circuitry, it could be utilized for solar energyharvesting.

Publisher

River Publishers

Subject

Electrical and Electronic Engineering,Astronomy and Astrophysics

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and analysis of a broadband wide-angle metamaterial solar absorber for the visible spectrum;2024 3rd International Conference on Advancement in Electrical and Electronic Engineering (ICAEEE);2024-04-25

2. A Highly Stable Perfect Metamaterial Absorber Based on the Plasmonic Effect of Metamaterial Nano-cells for Optical Spectrum Applications;Signals and Communication Technology;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3