Planar Antenna Design on the Characteristics of Moore Fractal-based High Impedance Surface

Author:

Gupta Akash K.ORCID,Chowdary Paladuga S. R.ORCID,Krishna Mandhapati V.

Abstract

This work presents a planar antenna with a rectangular shape designed over a Moore curve fractal-shaped High Impedance Surface (HIS). The Moore fractal geometries are space-filling curves and are useful for multiband applications. The Moore curve-shaped fractal HIS is simulated up to three iterations, and performance is examined. The proposed antenna has multiband operation within the S-band, C-band, and lower X-band frequency of operation. The antenna has a peak gain of 5.08 dB, 4.69 dB, and 5.07 dB with a Moore curve fractal HIS, with iterations 1, 2, and 3 used as the ground plane. The antenna has been analyzed regarding the reflection coefficient, radiation pattern, 3-D polar plots, and surface current distribution. With Moore curve iteration 1, a shaped HIS provides a maximum bandwidth of 740 MHz with the center frequency of 10.95 GHz, 1.24 GHz with the center frequency of 10.57 GHz, and 1.09 GHz with the center frequency of 12.5 GHz with the second and third iterations, respectively.

Publisher

River Publishers

Subject

Electrical and Electronic Engineering,Astronomy and Astrophysics

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Design and Analysis of Square Fractal Shaped Planar Antenna;2024 IEEE Wireless Antenna and Microwave Symposium (WAMS);2024-02-29

2. Design and Analysis of a Slotted Microstrip Patch Antenna for Wide-Band Applications with Controlled Resonance;2024 IEEE Wireless Antenna and Microwave Symposium (WAMS);2024-02-29

3. Design and Development of Compact Microstrip Patch Antenna with DGS for Wireless Applications;2024 IEEE Wireless Antenna and Microwave Symposium (WAMS);2024-02-29

4. Sierpinski Gasket Fractal-Based Microwave Metamaterial Absorber;2024 IEEE Wireless Antenna and Microwave Symposium (WAMS);2024-02-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3