Abstract
The utilization of physics-informed deep learning (PI-DL) methodologies provides an approach to augment the predictive capabilities of deep learning (DL) models by constraining them with known physical principles. We utilize a PI-DL model called the deep operator network (DeepONet) to solve two-dimensional (2D) electromagnetic (EM) scattering problems. Numerical results demonstrate that the discrepancy between the DeepONet and conventional method of moments (MoM) is small, while maintaining computational efficiency.