Simulation of Cavitating Jet Through a Poppet Valve with Special Emphasis on Laminar-Turbulent Transition

Author:

Yuan CongORCID,Cai Yan,Liu Shiqi,Du Zunling

Abstract

One of the major problems in oil-hydraulic poppet valve is the deteriorated performance accompanied by occurrence of cavitation. This is mainly a consequence of lack in understanding of the cavitating jet, which has inhibited the development of sufficiently general and accurate models for prediction of its performance. In the current paper, a two-phase volume of fluid (VOF) methodology combined with Schnerr-Sauer cavitation model is employed to perform quasi-direct transient fully three-dimensional calculations of the cavitating jet inside a poppet valve, with special concern on the laminar-turbulent transition. The numerical results allow separate examination of several distinctive flow characteristics, which show agreeable consistency with experimental observation. The periodic evolution of cavitation structure is related to temporal development of large-scale structure. The potential core indicated by velocity distribution, however, assumes a similar flow pattern regardless of temporal evolution of large-scale eddy. According to the different flow characteristics, the transitional process is divided into several parts, including laminar part, waving fluctuation, cross-linked vortex segments and cloud of cavitating vortexes. A comprehensive discussion on the transition is performed based on the numerical results, with primary concern on the governing mechanisms, including the formation of coherent structure organized as paired vortex, development of instability together with its effects on the coherent structure, and interaction between the vortexes. The streamwise vorticity strength accounts for less than 10% of the total vorticity in the cross-link region. It reveals that the breakdown of paired coherent structure is a result of the successive pairing process generated from combination of longitudinal and circumferential perturbation, instead of the growth of streamwise vortices as in the case of submerged circular jet.

Publisher

River Publishers

Subject

General Physics and Astronomy,Mechanical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3