Flow Field Characteristics and Structure Improvement of Double-stage Safety Valve

Author:

Guochao Zhao,Shi Yin,Yuning Song,Hui Wang

Abstract

The paper proposes a new double-stage large flow protection relief valve based on the double-stage linkage structure, to solve the problem that when it is impacted by the top plate, the traditional hydraulic support protective relief valve has smaller overflow and lower sensitivity, which causes the column circuit to be damaged. The flow field characteristics of double-stage protective relief valve are numerically simulated by the computational fluid dynamics method and semi-implicit connection pressure equation calculation model. Then the dynamic characteristics of the flow field distribution of the double-stage protective relief valve are obtained. According to the law of fluid flow, the structure of main valve core is optimized for the negative pressure, cavitation and vortex area. The flow field characteristics of the optimized double-stage protection valve are simulated and analyzed. In the end, the flow field characteristics of optimized double-stage protective relief valve are compared with the original. The results show that the negative pressure value of double-stage protective relief valve is reduced by 15%, and the outlet velocity of double-stage protective relief valve is reduced by 21% compared to the unoptimized when the main core is fully opened. The research results provide reference for the evolution design of high-flow, impact-resistant hydraulic support safety valve structure.

Publisher

River Publishers

Subject

General Physics and Astronomy,Mechanical Engineering

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3