Deep Neural Networks-based Classification Methodologies of Speech, Audio and Music, and its Integration for Audio Metadata Tagging

Author:

Park HosungORCID,Chung Yoonseo,Kim Ji-Hwan

Abstract

Videos contain visual and auditory information. Visual information in a video can include images of people, objects, and the landscape, whereas auditory information includes voices, sound effects, background music, and the soundscape. The audio content can provide detailed information on the story by conducting a voice and atmosphere analysis of the sound effects and soundscape. Metadata tags represent the results of a media analysis as text. The tags can classify video content on social networking services, like YouTube. This paper presents the methodologies of speech, audio, and music processing. Also, we propose integrating these audio tagging methods and applying them in an audio metadata generation system for video storytelling. The proposed system automatically creates metadata tags based on speech, sound effects, and background music information from the audio input. The proposed system comprises five subsystems: (1) automatic speech recognition, which generates text from the linguistic sounds in the audio, (2) audio event classification for the type of sound effect, (3) audio scene classification for the type of place from the soundscape, (4) music detection for the background music, and (5) keyword extraction from the automatic speech recognition results. First, the audio signal is converted into a suitable form, which is subsequently combined from each subsystem to create metadata for the audio content. We evaluated the proposed system using video logs (vlogs) on YouTube. The proposed system exhibits a similar accuracy to handcrafted metadata for the audio content, and for a total of 104 YouTube vlogs, achieves an accuracy of 65.83%.

Publisher

River Publishers

Subject

Computer Networks and Communications,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3