Fine-grained Sentiment-enhanced Collaborative Filtering-based Hybrid Recommender System

Author:

Alatrash Rawaa,Priyadarshini Rojalina

Abstract

Developing online educational platforms necessitates the incorporation of new intelligent procedures in order to improve long-term student experience. Presently, e-learning recommender systems rely on deep learning methods to recommend appropriate e-learning materials to the students based on their learner profiles. Fine-grained sentiment analysis (FSA) can be leveraged to enrich the recommender system. User-posted reviews and rating data are vital in accurately directing the student to the appropriate e-learning resources based on posted comments by comparable learners. In this work, a new e-learning recommendation system is proposed based on individualization and FSA. A hybrid framework is provided by integrating alternating least square (ALS) based collaborative filtering (CF) with FSA to generate an effective e-content recommendation named HCFSAR. ALS attempts to capture the learner’s latent factors based on their selections of interest to build the learner profile. Three FSA models based on attention mechanisms and bidirectional long short-term memory (bi-LSTM) are suggested and used to train twelve models in order to predict new ratings from learner-posted book reviews based on the extracted learner profile. HCFSAR used multiplication word embeddings for stronger corpus representation that were trained on a dataset generated for an educational context and showed a better accuracy of 93.39% for the best model entitled MHAM based ABHR-2 with multiplication (MHAAM), which performed better than other models. A tailored dataset that has been created by scraping reviews of different e-learning resources is leveraged to train different proposed models and validate against public datasets.

Publisher

River Publishers

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3