Machine Learning Approaches for Fake Reviews Detection: A Systematic Literature Review

Author:

Ennaouri Mohammed,Zellou Ahmed

Abstract

These days, most people refer to user reviews to purchase an online product. Unfortunately, spammers exploit this situation by posting deceptive reviews and misleading consumers either to promote a product with poor quality or to demote a brand and damage its reputation. Among the solutions to this problem is human verification. Unfortunately, the real-time nature of fake reviews makes the task more difficult, especially on e-commerce platforms. The purpose of this study is to conduct a systematic literature review to analyze solutions put out by researchers who have worked on setting up an automatic and efficient framework to identify fake reviews, unsolved problems in the domain, and the future research direction. Our findings emphasize the importance of the use of certain features and provide researchers and practitioners with insights on proposed solutions and their limitations. Thus, the findings of the study reveals that most approaches focus on sentiment analysis, opinion mining and, in particular, machine learning (ML), which contributes to the development of more powerful models that can significantly solve the problem and thus enhance further the accuracy and efficiency of detecting fake reviews.

Publisher

River Publishers

Subject

Computer Networks and Communications,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3