Author:
Kumar Arun,Dutta Kamlesh,Srivastava Abhishek
Abstract
The problem of space layout planning, constrained by a number of functional and non-functional requirements, not only challenges architects in coming up with a good solution, but is more difficult to give an alternative. Genetic algorithms (GAs) have been found suitable for solving the problem of providing alternative solutions. However, GAs have been found to be susceptible to the problem of local maxima and plateau conditions. To overcome these problems, the multi-population genetic algorithm (MPGA) improves the diversity of the population, thereby improving the quality of the solution. Algorithms are employed to automatically generate layout designs in best-connected ways, either rectangular or square. The area of the floor plans is optimized to minimize the extra area in the layout. The layouts are divided into four groups and these groups are related to each other based on highest proximity. Layout designs have been simulated using GA and MPGA algorithms and MPGA has shown significant improvement in computation time as well as quality over alternative solutions. In addition, the algorithm also provides the architect with the facility to interactively modify the dimensions and adjacent criteria during the design phase. The system works on clouds and shows the result for inputs passed by an architect.
Subject
Computer Networks and Communications,Information Systems,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献