Two-stage Detection of Semantic Redundancies in RDF Data

Author:

Chen Yiming,Li Daiyi,Yan Li,Ma Zongmin

Abstract

With the enrichment of the RDF (resource description framework), integrating diverse data sources may result in RDF data duplication. Failure to effectively detect the duplicates brings redundancies into the integrated RDF datasets. This not only increases unnecessarily the size of the datasets, but also reduces the dataset quality. Traditionally a similarity calculation is applied to detect if a pair of candidates contains duplicates. For massive RDF data, a simple similarity calculation may lead to extremely low efficiency. To detect duplicates in the massive RDF data, in this paper we propose a detection approach based on RDF data clustering and similarity measurements. We first propose a clustering method based on locality sensitive hashing (LSH), which can efficiently select candidate pairs in RDF data. Then, a similarity calculation is performed on the selected candidate pairs. We finally obtain the duplicate candidates. We show through experiments that our approach can quickly extract the duplicate candidates in RDF datasets. Our approach had the highest F score and time performance in the OAEI (Ontology Alignment Evaluation Initiative) 2019 competition.

Publisher

River Publishers

Subject

Computer Networks and Communications,Information Systems,Software

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3