Author:
Ahn Hyochang,Lee Yong-Hwan
Abstract
Traffic volume is gradually increasing due to the development of technology and the concentration of people in cities. As the results, traffic congestion and traffic accidents are becoming social problems. Detecting and tracking a vehicle based on computer vision is a great helpful in providing important information such as identifying road traffic conditions and crime situations. However, vehicle detection and tracking using a camera is affected by environmental factors in which the camera is installed. In this paper, we thus propose a deep learning based on vehicle classification and tracking scheme to classify and track vehicles in a complex and diverse environment. Using YOLO model as deep learning model, it is possible to quickly and accurately perform robust vehicle tracking in various environments, compared to the traditional method.
Subject
Computer Networks and Communications,Information Systems,Software
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Deep Learning-Based Image Analysis to Track Vehicles;2024 2nd International Conference on Disruptive Technologies (ICDT);2024-03-15
2. Target Tracking Techniques for UAV Aerial Images;2023 IEEE 6th International Conference on Pattern Recognition and Artificial Intelligence (PRAI);2023-08-18