A Scheme of Selecting Vehicles to Assist Download Based on WebGIS for VANET

Author:

Zhou Qibin,Su Qinggang,Xiong Peng

Abstract

The assisted download is an effective method solving the problem that the coverage range is insufficient when Wi-Fi access is used in VANET. For the low utilization of time-space resource within blind area and unbalanced download services in VANET, this paper proposes an approximate global optimum scheme to select vehicle based on WebGIS for assistance download. For WebGIS, this scheme uses a two-dimensional matrix to respectively define the time-space resource and the vehicle selecting behavior, and uses Markov Decision Process to solve the problem of time-space resource allocation within blind area, and utilizes the communication features of VANET to simplify the behavior space of vehicle selection so as to reduce the computing complexity. At the same time, Euclidean Distance(Metric) and Manhattan Distance are used as the basis of vehicle selection by the proposed scheme so that, in the case of possessing the balanced assisted download services, the target vehicles can increase effectively the total amount of user downloads. Experimental results show that because of the wider access range and platform independence of WebGIS, when user is in the case of relatively balanced download services, the total amount of downloads is increased by more than 20%. Moreover, WebGIS usually only needs to use Web browser (sometimes add some plug-ins) on the client side, so the system cost is greatly reduced.

Publisher

River Publishers

Subject

Computer Networks and Communications,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3