Simulation of Web Page Big Data Capture Method Based on WNN Optimized by Locust Algorithm

Author:

Jiang Zhao-yin

Abstract

In order to improve web page big data capturing ratio, the wavelet neural network (WNN) optimized by improved locust algorithm is established for capturing web page big data. First, the web page big data method is established, and the corresponding mathematical model is studied. Secondly, the neural network is established, and Legendre wavelet basis function is used as excitation function of hidden layer of WNN, and the theory models of input layer, output layer and hidden layer are constructed, and then the improved locust optimization algorithm is designed based on Levy flight local search strategy, linear decreasing parameter random jump strategy, decreasing coefficient update strategy and weight coefficient update strategy. Finally, a case study is carried out for validating the proposed web big data capturing method, results illustrate that the proposed method based on WNN optimized by improved locust algorithm can effectively improve web page big data capturing efficiency and accuracy, which has wide application view.

Publisher

River Publishers

Subject

Computer Networks and Communications,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3