Handling Heterogeneous Data in Knowledge Graphs: A Survey

Author:

Singh Sushmita,Siwach Manvi

Abstract

In this era of information where everything is digital, data tends to be ubiquitous. Data Analytics is a term that covers all the areas that deal with the logical analysis of raw data Graph analytics is one of the emerging domains of data analytics that represents and analyses data in the form of knowledge graphs. Knowledge graphs play a vital role in analysing and processing data in order to make decisions. In knowledge graphs the data is stored in the form of entities, relationships between the entities and the attributes of entities as well as attributes of relationships. Construction of knowledge graph and its analytics face multiple challenges like data redundancy, heterogeneity of data, missing data, dynamic nature of real-world data etc. This paper focuses on the issue related to heterogeneity of data while constructing a knowledge graph, and it provides a systematic literature review over construction of knowledge graphs from heterogeneous data sources. This review compiles state-of-the-art knowledge fusion techniques. To conduct this systematic literature review, an exhaustive approach has been adopted to identify various procedures and algorithms included and adapted by different research works for knowledge graph construction.

Publisher

River Publishers

Subject

Computer Networks and Communications,Information Systems,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3