Botnet Attack Detection Using A Hybrid Supervised Fast-Flux Killer System
-
Published:2021-12-30
Issue:
Volume:
Page:
-
ISSN:1544-5976
-
Container-title:Journal of Web Engineering
-
language:
-
Short-container-title:JWE
Author:
Al-Nawasrah Ahmad,Almomani Ammar,A. Al_Issa Huthaifa,Alissa Khalid,Alrosan Ayat,A. Alaboudi Abdulellah,B. Gupta Brij
Abstract
A Fast Flux Service Network (FFSN) domain name system method is a technique used on botnet that bot herders used to support malicious botnet actions to rapidly change the domain name IP addresses and to increase the life of malicious servers. While several methods for the detection of FFSN domains are suggested, they are still suffering from relatively low accuracy with the zero-day domain in particular. Throughout the current research, a system that’s deemed new is proposed. The latter system is called (the Fast Flux Killer System) and is abbreviated as (FFKS)). It allows one to have the FF-Domains “zero-day”, via a deployment built on (ADeSNN). It is a hybrid, which consists of two stages. The online phase according to the learning outcomes from the offline phase works on detecting the zero-day domains while the offline phase helps in enhancing the classification performance of the system in the online phase. This system will be compared to a previously published work that was based on a supervised detection method using the same ADeSNN algorithm to have the FFSNs domains detected, also to show better performance in detecting malicious domains. A public data set for the impacts of the hybrid ADeSNN algorithm is employed in the experiment. When hybrid ADeSNN was used over the supervised one, the experiments showed better accuracy. The detection of zero-day fast-flux domains is highly accurate (99.54%) in a mode considered as an online one.
Publisher
River Publishers
Subject
Computer Networks and Communications,Information Systems,Software
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献