Multi-granularity Decomposition of Componentized Network Applications Based on Weighted Graph Clustering

Author:

Wang Ziliang,Zhou Fanqin,Feng Lei,Li Wenjing,Zhang Tingting,Wang Sheng,Li Ying

Abstract

With the development of mobile communication and network technology, smart network applications are experiencing explosive growth. These applications may consume different types of resources extensively, thus calling for the resource contribution from multiple nodes available in probably different network domains to meet the service quality requirements. Task decomposition is to set the functional components in an application in several groups to form subtasks, which can then be processed in different nodes. This paper focuses on the models and methods that decompose network applications composed of interdependent components into subtasks in different granularity. The proposed model characterizes factors that have important effects on the decomposition, such as dependency level, expected traffic, bandwidth, transmission delay between components, as well as node resources required by the components, and a density peak clustering (DPC) -based decomposition algorithm is proposed to achieve the multi-granularity decomposition. Simulation results validate the effect of the proposed approach on reducing the expected execution delay and balancing the computing resource demands of subtasks.

Publisher

River Publishers

Subject

Computer Networks and Communications,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3