Semantics-Aware Context-Based Learner Modelling Using Normalized PSO for Personalized E-learning

Author:

Ezaldeen Hadi,Bisoy Sukant Kishoro,Misra Rachita,Alatrash Rawaa

Abstract

E-learning proves its importance in the diverse educational levels over traditional education. An adaptive e-learning system needs to deduce the learner model for adding personalization to instructional websites. The learner model is the perception repository about the e-content user, which can be inferred implicitly by employing meaningful semantic analysis of the text. In this research, a novel methodology is proposed to conceptually deduce the semantic learner model for personalized e-learning recommendations. Firstly, Conceptual Learner Model (CLM) is developed based on the learner’s behavior and context-based text semantic representation by exploiting concepts from the ConceptNet knowledge base, with a significant association of patterns and rules. Then, Expanded Contextual Learner Model (ECLM) is developed by exploring the latent semantics in graphs to add concepts with the common-sense meanings that exceeded the named entities. The learner’s knowledge graph is defined based on contextually associated concepts. Semantic relations in ConceptNet are exploited to extend learner models. The Normalized Particle Swarm Optimization (NPSO) algorithm is used to learn the importance of the relation types between the concepts. Thus, CLM and ECLM each are represented as a vector of weighted concepts in which updating is obtained automatically. The proposed recommendation system incorporates dynamic learner models to predict an appropriate e-content with the highest ranking, matching the true needs of a particular learner. Our simulation results show that the performance of ECLM is better Mean Reciprocal Rank (MRR) value 0.780 than other existing methods.

Publisher

River Publishers

Subject

Computer Networks and Communications,Information Systems,Software

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3