Author:
Zhang Mei,Su Huihui,Wen Jinghua
Abstract
This paper uses Python, R language, Gephi and other software to crawl and classify the comment content of Weibo hot search events. Using word cloud, co-occurrence social network graphs, LDA topic classification visualization methods, this paper regularizes and integrates public opinions of hot events. Through this research, we can get the influence of public opinion mediators, public opinion objects, and government forces on the network public opinion and put forward corresponding improvement suggestions. We hope to contribute to the government’s governance and prevention of online public opinion during the spread of COVID-19 and other public hot events.
Subject
Computer Networks and Communications,Information Systems,Software
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献