Abstract
Unmanned aerial vehicles like drones are one of the key development technologies with many beneficial applications. As they have made great progress, security and privacy issues are also growing. Drone tacking with a moving camera is one of the important methods to solve these issues. There are various challenges of drone tracking. First, drones move quickly and are usually tiny. Second, images captured by a moving camera have illumination changes. Moreover, the tracking should be performed in real-time for surveillance applications. For fast and accurate drone tracking, this paper proposes a tracking framework utilizing two trackers, a predictor, and a refinement process. One tracker finds a moving target based on motion flow and the other tracker locates the region of interest (ROI) employing histogram features. The predictor estimates the trajectory of the target by using a Kalman filter. The predictor contributes to keeping track of the target even if the trackers fail. Lastly, the refinement process decides the location of the target taking advantage of ROIs from the trackers and the predictor. In experiments on our dataset containing tiny flying drones, the proposed method achieved an average success rate of 1.134 times higher than conventional tracking methods and it performed at an average run-time of 21.08 frames per second.
Subject
Computer Networks and Communications,Information Systems,Software
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献