A Prescriptive Model for Migration to Microservices Based on SDLC Artifacts

Author:

Bajaj DeepaliORCID,Bharti Urmil,Goel Anita,Gupta S. C.

Abstract

Microservices architectural style is gaining popularity in industry and is being widely adopted by large corporations like Amazon, Netflix, Spotify, eBay, and many more. Several other organizations are also preferring to migrate their existing enterprise scale applications to microservices architecture. Researchers have proposed various approaches for microservices decomposition to be used in migrating or rebuilding a monolithic application to microservices. Applying any available approach to an existing monolithic application is not a straightforward decision; thus, there is a need for guidelines that assist in the migration process. There are various challenges in a migration process because different migration approaches use different sets of input data to identify microservices. Since the available migration techniques are not structured, logically, selection of an appropriate migration strategy is a difficult decision for any system architect. So, it is a recurrent open research question – which migration technique should be adopted to get microservices for a legacy monolithic application? This paper addresses this research challenge by examining existing approaches for microservices migration and groups them based on software development life cycle (SDLC) artifacts. Our research also proposes a microservices prescriptive model (MPM) from the existing prominent microservice migration techniques. This model provides recommendation (1) for refactoring an existing legacy system to microservices, and (2) for new microservices development projects. Our study also helps in gaining more insight about greenfield and brownfield development approaches in microservices applications. Moreover, researchers and practitioners of the field can benefit from this model to further validate their migration approaches based on the available system artifacts.

Publisher

River Publishers

Subject

Computer Networks and Communications,Information Systems,Software

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. GTMicro—microservice identification approach based on deep NLP transformer model for greenfield developments;International Journal of Information Technology;2024-03-08

2. A Comprehensive Microservice Extraction Approach Integrating Business Functions and Database Entities;The International Arab Journal of Information Technology;2024-01-01

3. Towards an Architecture-Centric Methodology for Migrating to Microservices;Agile Processes in Software Engineering and Extreme Programming – Workshops;2023-12-28

4. GreenMicro: Identifying Microservices From Use Cases in Greenfield Development;IEEE Access;2022

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3