Unified Model for Learning Style Recommendation

Author:

Ninrutsirikun UnhawaORCID,Pal DebajyotiORCID,Arpnikanondtand ChonlamethORCID,Watanapa BunthitORCID

Abstract

Studying computer programming requires not only an understanding of theories and concepts but also coding adeptness. Success in studying or conducting such a course is definitely a challenge. This paper proposes a systematic learning style recommendation. The model is designed to evaluate students’ attributes and ongoing or formative learning outcomes for suggesting the effective style-fit strategy that facilitates learners to enhance their learning performances in terms of knowledge and skill. A two-stage association analysis was designed and conducted on a dataset collected from IT major students who enrolled in the Introduction to Computer Programming course. The first stage of association rules is to analyze and discover important relationships amongst learning styles, students’ attribute, and learning performance. The second stage of moderation analysis is then applied to probe the moderation effect of the different learning preferences on the relationship between student attributes and learning achievement. Experiments expose many insights, for example, mathematics and logical thinking are powerful assets of success in computer programming study. Association rules can effectively identify associations of learning styles and the learning performance in terms of knowledge or skills. By moderation analysis, students in the “Excellent” cluster have a broad learning style than other students. Two types of significant moderators, the universal and specific, exemplify how lecturers can flexibly post style-fit teaching strategies for a class-wide and specific group, respectively.

Publisher

River Publishers

Subject

Computer Networks and Communications,Information Systems,Software

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3