Bayesian Probability and Tanimoto Based Recurrent Neural Network for Question Answering System

Author:

Jagannathan Veeraraghavan

Abstract

Question Answering (QA) has become one of the most significant information retrieval applications. Despite that, most of the question answering system focused to increase the user experience in finding the relevant result. Due to the continuous increase of web content, retrieving the relevant result faces a challenging issue in the Question Answering System (QAS). Thus, an effective Question Classification (QC), and retrieval approach named Bayesian probability and Tanimoto-based Recurrent Neural Network (RNN) are proposed in this research to differentiate the types of questions more efficiently. This research presented an analysis of different types of questions with respect to the grammatical structures. Various patterns are identified from the questions and the RNN classifier is used to classify the questions. The results obtained by the proposed Bayesian probability and Tanimoto-based RNN showed that the syntactic categories related to the domain-specific types of proper nouns, numeral numbers, and the common nouns enable the RNN classifier to reveal better result for different types of questions. However, the proposed approach obtained better performance in terms of precision, recall, and F-measure with the values of 90.14, 86.301, and 90.936 using dataset-2.

Publisher

River Publishers

Subject

Computer Networks and Communications,Information Systems,Software

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3