Semantically Enriched Keyword Prefetching Based on Usage and Domain Knowledge

Author:

Setia Sonia,Jyoti ,Duhan Neelam,Anand Aman,Verma Nikita

Abstract

In intelligent web systems [2], web prefetching [27] plays a crucial role. In order to make accurate predictions for web prefetching, it is important but challenging to uncover valuable information from web use statistics [16]. Using statistics and domain expertise, this study presents a new approach dubbed SPUDK for efficient prefetching. In this paper, it is shown how web access logs can be used efficiently for browsing prediction. Our main focus is on the technique needed to manage the queries found in web access logs so that valuable information can be attained. We further process these access logs using a taxonomy and a thesaurus, WordNet, to find the semantics of queries. SPUDK, a system that organises use data into semantic clusters, is one example of this approach. Our contributions in this paper are as follows: (1) A technique to exploit query keywords from access logs. (2) An approach to enrich queries with semantic information. (3) A new similarity measure for finding similarity among URLs present in access logs. (4) A novel clustering technique to find semantic clusters of URLs. (5) Experimental evaluation of the proposed system. The proposed SPUDK system is evaluated using American Online (AOL) logs, which gives improvement of 39% in precision of prediction, 35% in hit ratio and reduction of 50.6% in latency on average as compared to other prediction techniques in the literature.

Publisher

River Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3