Enhancing Suggestion Detection in Online User Reviews through Integrated Information Retrieval and Deep Learning Approaches

Author:

Hadizadeh Zahra,Nazari Amin,Mansoorizadeh MuharramORCID

Abstract

In the aftermath of the COVID-19 pandemic, using web platforms as a communication medium and decision-making tool in online commerce has become widely acknowledged. User-generated comments, reflecting positive and negative sentiments towards specific items, serve as invaluable indicators, offering recommendations for product and organizational improvements. Consequently, the extraction of suggestions from mined opinions can enhance the efficacy of companies and organizations in this domain. Prevailing research in suggestion mining predominantly employs rule-based methodologies and statistical classifiers, relying on manually identified features. However, a recent trend has emerged wherein researchers explore solutions grounded in deep learning tools and techniques. This study aims to employ information retrieval techniques for the automated identification of suggestions. To this end, various methodologies, including distance measurement approaches, multilayer perceptron neural networks, support vector machines, regression logistics, convolutional neural networks utilizing TF-IDF, Bag of Words (BOW), and Word2Vec vectors, along with keyword extraction, have been integrated. The proposed approach is assessed using the SemEval2019 dataset to extract suggestions from the textual content of online user reviews. The obtained results demonstrate a notable enhancement in the F1 score, reaching 0.76 compared to prior research. The experiments further suggest that information retrieval-based approaches exhibit promising potential for this specific task.

Publisher

River Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3