Generative Architecture for Data Imputation in Secure Blockchain-enabled Spatiotemporal Data Management

Author:

Li Song,Liu WenFen,Wu Yan,Zhao Jie

Abstract

In the era of big data, one of the most critical challenges is ensuring secure access, retrieval, and sharing of linked spatiotemporal data. To address this challenge, this paper introduces a groundbreaking blockchain-enabled evolutionary indirect feedback graph algorithm for the secure management of interconnected spatiotemporal datasets. The algorithm utilizes a generative neural network model for data imputation, predicting and generating plausible values to improve dataset completeness and integrity. The core architecture utilizes blockchain technology to optimize data retrieval efficiency and uphold robust access control mechanisms. The algorithm incorporates indirect feedback mechanisms, allowing users to provide implicit feedback through their interactions, enhancing the relevance and efficiency of data retrieval. In addition. sophisticated graph-based techniques are used to model intricate relationships between data entities, facilitating seamless data retrieval and sharing in interwoven datasets. The algorithm’s data security approach includes comprehensive access control mechanisms, encryption, and authentication mechanisms, safeguarding data confidentiality and integrity. Extensive evaluations show significant enhancements in retrieval performance and access control precision, making the proposed model a promising solution for the secure management of expansive interconnected spatiotemporal data.

Publisher

River Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3