Vortex and Core Detection using Computer Vision and Machine Learning Methods

Author:

Xu Zhenguo,Maria Ayush,Chelli Kahina,Premare Thibaut Dumouchel De,Bilbao Xabadin,Petit Christopher,Zoumboulis-Airey Robert,Moulitsas Irene,Teschner Tom,Asif Seemal,Li Jun

Abstract

The identification of vortices and cores is crucial for understanding airflow motion in aerodynamics. Currently, numerous methods in Computer Vision and Machine Learning exist for detecting vortices and cores. This research develops a comprehensive framework by combining classic Computer Vision and state-of-the-art Machine Learning techniques for vortex and core detection. It enhances a CNN-based method using Computer Vision algorithms for Feature Engineering and then adopts an Ensemble Learning approach for vortex core classification, through which false positives, false negatives, and computational costs are reduced. Specifically, four features, i.e., Contour Area, Aspect Ratio, Area Difference, and Moment Centre, are employed to identify vortex regions using YOLOv5s, followed by a hard voting classifier based on Random Forest, Adaptive Boosting, and Xtreme Gradient Boosting algorithms for vortex core detection. This novel approach differs from traditional Computer Vision approaches using mathematical variables and image features such as HAAR and SIFT for vortex core detection. The findings show that vortices are detected with a high degree of statistical confidence by a fine-tuned YOLOv5s model, and the integrated technique produces an accuracy score of 97.56% in detecting vortex cores conducted on a total of 133 images generated from a rotor blade NACA0012 simulation. Future work will focus on framework generalisation with a larger and more diverse dataset and intelligent threshold development for more efficient vortex and core detection.

Publisher

River Publishers

Subject

Mechanical Engineering,Mechanics of Materials,Modeling and Simulation

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3