Viscous Dissipation Effect on Magnetohydrodynamics Fluid Flow Over an Exponential Surface with the Influence of Thermal Radiation and Thermal Diffusion
-
Published:2023-05-03
Issue:
Volume:
Page:
-
ISSN:2642-2050
-
Container-title:European Journal of Computational Mechanics
-
language:
-
Short-container-title:TECM
Author:
Akinbo Bayo Johnson,Olajuwon Bakai Ishola
Abstract
This present investigation studies the effect of viscous dissipation in magnetohydrodynamics fluid flow over an exponential surface subject to the influence of thermal radiation and thermal diffusion. The coupled nonlinear guiding equations responsible for the flow, heat and mass transports presented as partial differential equations are revamped to the associated ordinary differential equation by application of the associated similarity variables and solved by Galerkin Weighted residual method (GWRM). The results of various parameters encountered are analyzed with graphs while the Sherwood number, Nussetl number, and local skin friction are computed and discussed. The study demonstrates, among other things, that the fluid has a strong thermal conductivity at low Prandtl numbers and that heat diffuses from the surface more quickly at low Prandtl numbers in comparison with the higher values.
Publisher
River Publishers
Subject
Metals and Alloys,Mechanical Engineering,Mechanics of Materials