Analysis of Bridge Dynamics and Response Characteristics Under The Influence of Axle Coupling Vibration

Author:

Zhifang Ma,Xiaoguang Guo

Abstract

To ensure the safety and stability of high-speed rail lines and reduce external interference, it is essential to build a large number of elevated bridges. These elevated bridges account for a considerable proportion of the total length of high-speed rail lines. However, when high-speed rail lines pass through earthquake prone areas, the likelihood of earthquakes occurring when trains pass through bridges increases significantly. Therefore, it is necessary to study the dynamic response of bridge structures under earthquake action to ensure the safety of bridges during train operation and operation. The optimization scheme proposed in this article has undergone moderate impact tests, and the results show that the maximum lateral displacement of the bridge can reach 124 mm, while the maximum vertical acceleration is 5.16 m/s2, Exceeded the safety limit of 0.35 g. Through the analysis of train derailment coefficient, wheel load reduction rate, lateral sway force, lateral and vertical acceleration, and Spelling comfort index, we have come to the conclusion that bridges can ensure the safety of train operation in the absence of earthquakes and small earthquakes, and can also maintain certain stability under medium and large earthquakes. These research results have important guiding significance for the design and construction of high-speed rail lines. By optimizing the bridge structure and adopting relevant technical measures, the seismic disaster resistance of high-speed rail lines can be further improved, ensuring the safety and comfort of passengers during travel. At the same time, these research results also provide useful reference and inspiration for the construction and improvement of future high-speed rail lines.

Publisher

River Publishers

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3