Abstract
A methodical approach for assessing the effects of an external point source to a non-spherical model of the human neck is presented in this paper. The neck model consists of multilayered spheres to represent the skin, fat, muscle tissues, thyroid, and esophagus. The novel geometry enables the formulation of dyadic Green’s functions to accurately calculate the electric fields, considering the suitable surface boundary conditions and the superposition principle. Numerical outcomes for a Hertz dipole (i.e., a wireless network antenna) at the frequency of 2.4 GHz certify the benefits of the technique and elaborately describe the responsiveness of the neck/thyroid to the selected source.