Abstract
To improve the design of the 3D-printed W-band reflective Fresnel lens antenna based on acrylonitrile butadiene styrene (ABS) plastic, we have examined the parameter sensitivity related to the dielectric material constant. Although we have developed a high-gain millimeter-wave reflective Fresnel lens antenna, the material constant of the ABS filament used in 3D printing needs further investigation to optimize antenna performance. First, a 150-mm-diameter W-band reflector Fresnel antenna is designed and analyzed using finite-difference time-domain (FDTD) analysis. The analyzed and measured maximum antenna gains are 33.3 and 32.4 dBi, respectively. Subsequent sensitivity analysis focused on the impact of the loss tangent, relative dielectric constant, and folding length of the lens, based on both FDTD analysis and measurements.