A Deep Learning Framework for Intrusion Detection and Multimodal Biometric Image Authentication

Author:

Gayathri M.ORCID,Malathy C.ORCID

Abstract

Nowadays, a demand is increased all over the world in the field of information security and security regulations. Intrusion detection (ID) plays a significant role in providing security to the information, and it is an important technology to identify various threats in network during transmission of information. The proposed system is to develop a two-layer security model: (1) Intrusion Detection, (2) Biometric Multimodal Authentication. In this research, an Improved Recurrent Neural Network with Bi directional Long Short-Term Memory (I-RNN-BiLSTM) is proposed, where the performance of the network is improved by introducing hybrid sigmoid-tanh activation function. The intrusion detection is performed using I-RNN-BiLSTM to classify the NSL-KDD dataset. To develop the biometric multimodal authentication system, three biometric images of face, iris, and fingerprint are considered and combined using Shuffling algorithm. The features are extracted by Gabor, Canny Edge, and Minutiae for face, iris, and fingerprint, respectively. The biometric multimodal authentication is performed by the proposed I-RNN-BiLSTM. The performance of the proposed I-RNN-BiLSTM has been analysed through different metrics like accuracy, f-score, and confusion matrix. The simulation results showed that the proposed system gives better results for intrusion detection. Proposed model attains an accuracy of 98% for the authentication process and accuracy of 98.94% for the intrusion detection process.

Publisher

River Publishers

Subject

Industrial and Manufacturing Engineering,Media Technology,Communication

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quality Enhancement for Uninvited Content of Social Media Using Support Vector Machine and Alexnet;2023 International Conference on Data Science, Agents & Artificial Intelligence (ICDSAAI);2023-12-21

2. Prognosis prediction of high grade serous adenocarcinoma based on multi-modal convolution neural network;Neural Computing and Applications;2023-12-16

3. Detection of Unwanted Information on Quora Using Support Vector Machine and AlexNet;2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC);2023-12-04

4. A pediatric bone age assessment method for hand bone X-ray images based on dual-path network;Neural Computing and Applications;2023-10-31

5. Biometric Authentication-Based Intrusion Detection Using Artificial Intelligence Internet of Things in Smart City;Energies;2022-10-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3