Examination of the Bi-LSTM Based 5G-OFDM Wireless Network Over Rayleigh Fading Channel Conditions

Author:

Sarangi Sanjaya Kumar,Lenka Rasmita,Shankar Ravi,Mehraj Haider,Krishnan V. Gokula

Abstract

Fifth generation (5G) wireless networks’ system performance is dependent on having perfect knowledge of the channel state information (CSI). Deep learning (DL) has helped improve both the end-to-end reliability of 5G and beyond fifth generation (B5G) networks and the computational complexity of these networks. This work uses the Bi-linear long short-term memory (Bi-LSTM) scheme to examine the overall performance of the 5G orthogonal frequency division multiplexing (OFDM) technology. The least squares (LS) channel estimation scheme is a famous scheme employed to estimate the fading channel coefficients due to their lower complexity without the prior CSI. However, this scheme has an exceedingly high CSI error. Using pilot symbols (PS) and loss functions, this work has proposed the Bi-LSTM 5G OFDM estimators to improve the channel estimation obtained by the LS approach. All simulation analysis uses convex optimization (CO) software (CVX software) and stochastic gradient descent (SGD). When combined with many PS (72) and a cross-entropy loss function, the proposed Bi-LSTM outperforms the long-short-term memory (LSTM) cross-entropy, LS, and minimum mean square error (MMSE) estimators in low, medium, and high signal-to-noise ratio (SNR) regimes. The computational and training times of Bi-LSTM and LSTM DL estimators are also compared. Because of its DNN design, it can evaluate massive datasets, find hidden statistical patterns and characteristics, establish underlying relationships, and transfer what it has learnt to other contexts. Statistical analysis of the bit error rate (BER) reveals that Bi-LSTM outperforms the MMSE in terms of accurate channel prediction.

Publisher

River Publishers

Subject

Industrial and Manufacturing Engineering,Media Technology,Communication

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Investigation of Deep Learning Based NOMA System Over Time Varying Fading;2023 10th IEEE Uttar Pradesh Section International Conference on Electrical, Electronics and Computer Engineering (UPCON);2023-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3