Neuro-Symbolic Integration of Hopfield Neural Network for Optimal Maximum Random kSatisfiability (Maxrksat) Representation

Author:

Abubakar Hamza,Abdu Masanawa Sagir,Yusuf  Surajo

Abstract

Boolean satisfiability logical representation is a programming paradigm that has its foundations in mathematical logic. It has been classified as an NP-complete problem that difficult practical combinatorial optimization and search problems can be easily converted into it. Random Maximum kSatisfiability (MAX-RkSAT) composed of the most consistent mapping in a Boolean formula that generates a maximum number of random satisfied clauses. Many optimization and search problems can be easily expressed by mapping the problem into a Hopfield neural network (HNN) to minimize the optimal configuration of the corresponding Lyapunov energy function. In this paper, a hybrid computational model hs been proposed that incorporates the Random Maximum kSatisfiability (MAX-RkSAT) into the Hopfield neural network (HNN) for optimal Random Maximum kSatisfiability representation (HNN-MAX-RkSAT). Hopfield neural network learning will be integrated with the random maximum satisfiability to enhance the correct neural state of the network model representation. The computer simulation using C+++⁣+ has been used to demonstrate the ability of MAX-RkSAT to be embedded optimally in Hopfield neural network to serve as Neuro-symbolic integration. The performance of the proposed hybrid HNN-MAXRkSAT model has been explored and compared with the existing model. The proposed HNN-MAXRkSAT demonstrates good agreement with the existing models measured in terms of Global minimum Ratio (Gm), Hamming Distance (HD), Mean Absolute Error (MAE) and network computation Time CPU time). The proposed framework explored that MAX-RkSAT can be optimally represented in HNN and subsequently provides an additional platform for neural-symbolic integration, representing the various types of satisfiability logic.

Publisher

River Publishers

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3