Identity Authentication and Capability Based Access Control (IACAC) for the Internet of Things

Author:

Mahalle Parikshit N.,Anggorojati Bayu,Prasad Neeli R.,Prasad Ramjee

Abstract

In the last few years the Internet of Things (IoT) has seen widespreadapplication and can be found in each field. Authentication and accesscontrol are important and critical functionalities in the context of IoTto enable secure communication between devices. Mobility, dynamicnetwork topology and weak physical security of low power devices in IoTnetworks are possible sources for security vulnerabilities. It ispromising to make an authentication and access control attack resistant andlightweight in a resource constrained and distributed IoT environment.This paper presents the Identity Authentication and Capability basedAccess Control (IACAC) model with protocol evaluation and performanceanalysis. To protect IoT from man-in-the-middle, replay and denial ofservice (Dos) attacks, the concept of capability for access control isintroduced. The novelty of this model is that, it presents an integratedapproach of authentication and access control for IoT devices. Theresults of other related study have also been analyzed to validate andsupport our findings. Finally, the proposed protocol is evaluated byusing security protocol verification tool and verification results showsthat IACAC is secure against aforementioned attacks. This paper alsodiscusses performance analysis of the protocol in terms of computationaltime compared to other existing solutions. Furthermore, this paper addresseschallenges in IoT and security attacks are modelled with the use casesto give an actual view of IoT networks.

Publisher

River Publishers

Subject

Computer Networks and Communications,Hardware and Architecture

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Deep Learning based Effective Watermarking Technique for IoT Systems Signal Authentication;International Journal of Electrical and Electronics Research;2024-02-05

2. A Security Framework for Internet of Things Systems Based on Dynamic Watermarking for Data Packet Authentication and Anomaly Detection;2023 IEEE International Conference on Industrial Engineering and Engineering Management (IEEM);2023-12-18

3. Enhancing the Security of Iot Service Using Sem Model Based Machine Learning Technique;2023 Intelligent Computing and Control for Engineering and Business Systems (ICCEBS);2023-12-14

4. Security Threads and IoT Security;Journal of Computer and Communications;2023

5. Capability Based Access Control Mechanism in IoT: a Survey of State of the Art;ICT for Intelligent Systems;2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3