Machine Learning-Based Approach for Fake News Detection

Author:

Gururaj H. L.,Lakshmi H.,Soundarya B. C.,Flammini Francesco,Janhavi V.

Abstract

In the modern era where the internet is found everywhere and there is rapid adoption of social media which has led to the spread of information that was never seen within human history before. This is due to the usage of social media platforms where consumers are creating and sharing more information where most of them are misleading with no relevance with reality. Classifying the text article automatically as misinformation is a bit challenging task. This development addresses how automated classification of text articles can be done. We use a machine learning approach for the classification of news articles. Our study involves exploring different textual properties that may be often used to distinguish fake contents from real ones. By using those properties, can train the model with different machine learning algorithms and evaluate their performances. The classifier with the best performance is used to build the classification model which predicts the reliability of the news articles present in the dataset.

Publisher

River Publishers

Subject

Management of Technology and Innovation,Information Systems and Management,Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advanced Exploration of Machine Learning in Cybersecurity: A Comprehensive Analysis;2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC);2023-12-04

2. Preserving Information Integrity: A Novel Machine Learning Approach for Fake News Detection;2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC);2023-12-04

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3