Machine Learning-Based Approach for Fake News Detection
-
Published:2022-12-02
Issue:
Volume:
Page:
-
ISSN:2246-0853
-
Container-title:Journal of ICT Standardization
-
language:
-
Short-container-title:JICTS
Author:
Gururaj H. L.,Lakshmi H.,Soundarya B. C.,Flammini Francesco,Janhavi V.
Abstract
In the modern era where the internet is found everywhere and there is rapid adoption of social media which has led to the spread of information that was never seen within human history before. This is due to the usage of social media platforms where consumers are creating and sharing more information where most of them are misleading with no relevance with reality. Classifying the text article automatically as misinformation is a bit challenging task. This development addresses how automated classification of text articles can be done. We use a machine learning approach for the classification of news articles. Our study involves exploring different textual properties that may be often used to distinguish fake contents from real ones. By using those properties, can train the model with different machine learning algorithms and evaluate their performances. The classifier with the best performance is used to build the classification model which predicts the reliability of the news articles present in the dataset.
Publisher
River Publishers
Subject
Management of Technology and Innovation,Information Systems and Management,Computer Networks and Communications,Computer Science Applications,Information Systems
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Advanced Exploration of Machine Learning in Cybersecurity: A Comprehensive Analysis;2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC);2023-12-04
2. Preserving Information Integrity: A Novel Machine Learning Approach for Fake News Detection;2023 3rd International Conference on Mobile Networks and Wireless Communications (ICMNWC);2023-12-04