Diabetes Prediction Using Machine Learning Algorithms and Ontology

Author:

Massari Hakim El,Sabouri Zineb,Mhammedi Sajida,Gherabi NoreddineORCID

Abstract

Diabetes is one of the chronic diseases, which is increasing from year to year. The problems begin when diabetes is not detected at an early phase and diagnosed properly at the appropriate time. Different machine learning techniques, as well as ontology-based ML techniques, have recently played an important role in medical science by developing an automated system that can detect diabetes patients. This paper provides a comparative study and review of the most popular machine learning techniques and ontology-based Machine Learning classification. Various types of classification algorithms were considered namely: SVM, KNN, ANN, Naive Bayes, Logistic regression, and Decision Tree. The results are evaluated based on performance metrics like Recall, Accuracy, Precision, and F-Measure that are derived from the confusion matrix. The experimental results showed that the best accuracy goes for ontology classifiers and SVM.

Publisher

River Publishers

Subject

Management of Technology and Innovation,Information Systems and Management,Computer Networks and Communications,Computer Science Applications,Information Systems

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Diabetes Prediction Using Novel Machine Learning Methods;Advances in Computer and Electrical Engineering;2024-05-17

2. Web-Interfaced Diagnosis System of Diabetes Prediction Using Machine Learning Algorithms;2024 International Conference on Smart Systems for applications in Electrical Sciences (ICSSES);2024-05-03

3. Comprehensive Analysis of Multiple Diseases using Machine Learning;2024 International Conference on Inventive Computation Technologies (ICICT);2024-04-24

4. Comparative Study of Supervised Regression Algorithms in Machine Learning;Lecture Notes in Networks and Systems;2024

5. Machine Learning Models for Detection COVID-19;Lecture Notes in Networks and Systems;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3