Publisher
Korean Society of Road Engineers
Reference28 articles.
1. Ahmad, W. , Ahmad, A. , Ostrowski, K. , Aslam, F. , Joyklad, P. , Zajdel, P. , (2021). Application of Advanced Machine Learning Approaches to Predict the Compressive Strength of Concrete Containing Supplementary Cementitious Materials. Materials Vol. 14, 5762.
2. Asteris, P. , Mokos, V. , (2020). Concrete compressive strength using artificial neural networks. Neural Comput. Appl. Vol. 32, 11807- 11826.
3. Aurélien, G. , (2023). Hands-on Machine Learning with Scikit- Learn, Keras, and TensorFlow: Concepts, Tools, and Techniques to Build Intelligent Systems, Hanvit Media, Seoul, Korea.
4. Chauvenet, W. A. (1960). Manual of Spherical and Practical Astronomy V. II, 5th ed.; Dover: New York, NY, USA, pp. 474– 566.
5. Chou, J. , Pham, A. (2013). Enhanced Artificial Intelligence for Ensemble Approach to Predicting High Performance Concrete Compressive Strength. Constr. Build. Mater., Vol. 49, p.554-563.