Solving problems of the oil and gas sector using machine learning algorithms

Author:

Abstract

The article describes the tasks of the oil and gas sector that can be solved by machine learning algorithms. These tasks include the study of the interference of wells, the classification of wells according to their technological and geophysical characteristics, the assessment of the effectiveness of ongoing and planned geological and technical measures, the forecast of oil production for individual wells and the total oil production for a group of wells, the forecast of the base level of oil production, the forecast of reservoir pressures and mapping. For each task, the features of building machine learning models and examples of input data are described. All of the above tasks are related to regression or classification problems. Of particular interest is the issue of well placement optimisation. Such a task cannot be directly solved using a single neural network. It can be attributed to the problems of optimal control theory, which are usually solved using dynamic programming methods. A paper is considered where field management and well placement are based on a reinforcement learning algorithm with Markov chains and Bellman's optimality equation. The disadvantages of the proposed approach are revealed. To eliminate them, a new approach of reinforcement learning based on the Alpha Zero algorithm is proposed. This algorithm is best known in the field of gaming artificial intelligence, beating the world champions in chess and Go. It combines the properties of dynamic and stochastic programming. The article discusses in detail the principle of operation of the algorithm and identifies common features that make it possible to consider this algorithm as a possible promising solution for the problem of optimising the placement of a grid of wells.

Publisher

Technical University of Kosice - Faculty of Mining, Ecology, Process Control and Geotechnology

Subject

Geochemistry and Petrology,Geology,Geotechnical Engineering and Engineering Geology

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3