Quantum Chemical Study of Some Basic Organic Compounds as the Corrosion Inhibitors

Author:

AHMED Lana1ORCID,BULUT Niyazi2ORCID,KAYGILI Omer2ORCID,OMER Rebaz1ORCID

Affiliation:

1. koya university

2. FIRAT ÜNİVERSİTESİ

Abstract

The corrosion inhibitor activities of 10 molecules (Benzene (C1), Phenol (C2), Toluene (C3), Benzoic acid (C4), Acetophenone (C5), Chlorobenzene (C6), Bromobenzene (C7), Benzaldehyde (C8), Naphthalene (C9), and Anthracene (C10) were investigated using quantum mechanical methods. The energy of the highest occupied molecular orbital (EHOMO), the energy of the lowest occupied molecular orbital (ELUMO), the energy bandgap (E = ELUMO - EHOMO), and the dipole moment (μ) were all estimated in this study. The parameters mentioned can provide information about the corrosion efficiency of organic compounds. In addition, the density functional theory (DFT) was used to determine the geometry of the molecules as well as the electronic properties of the compounds. Physical parameters such as chemical hardness (ɳ), softness (σ), and electronegativity (χ) were determined using B3LYP/6-31G (d, p). As well as the quantum chemistry properties like the fraction of electrons transported (ΔN) between the iron surface and the titled compounds have been calculated. This research also aimed to find which variables have a significant linear relationship with inhibitory performance. According to the results, the behavior of organic-based corrosion inhibitors is related to the effectiveness of good corrosion inhibitors and the quantum chemical parameters measured during this process. As a result, corrosion inhibitor behavior can be predicted without the need for an experiment.

Funder

Firat University and Koya university

Publisher

Journal of Physical Chemistry and Functional Materials

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Composition and Properties of Aspirin Through DFT Analysis;Journal of Physical Chemistry and Functional Materials;2023-12-18

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3