The Significance of Natural Language Processing and Machine Learning in Schizophasia Description. Identification of Research Trends and Perspectives in Schizophrenia Language Studies

Author:

Mazur Michał1,Krukow Paweł1

Affiliation:

1. Department of Clinical Neuropsychiatry, Medical University of Lublin, Poland

Abstract

Introduction: Language and speech serve as significant biomarkers for psychiatric disorders, including schizophrenia. The linguistic features associated with schizophasia have been a focal point since the early descriptions of schizophrenia. Over the past twenty-five years, scientific reflection on language in mental illnesses has dynamically provided new data identifying the complex phenomenon of speech pathology in schizophrenia. Material and methods: A bibliometric analysis was conducted using SCOPUS data, focusing on word co-occurrence patterns in schizophrenia research. VOSviewer was employed for visualization, and semantic relationships between words were explored. Results: An analysis has revealed trends and gaps in research on schizophasia. Integrating temporal and spatial visualizations of metadata has allowed for the identification of currently employed measures of incoherence in schizophatic texts across various levels of linguistic organization. Keyword modeling has demonstrated a growing interest in utilizing artificial intelligence techniques to develop linguistic biomarkers for schizophrenia and other mental disorders. Conclusions: The harmonization of computational methods for measuring narrative, dialogic, and prosodic coherence holds promise, particularly in cross-validation studies involving other neuroindicators of mental disorders. Developing linguistic biomarkers using broadly understood artificial intelligence requires multidisciplinary research teams integrating experts from psychiatry, neurolinguistics, neurologopedics, and AI engineering. Clear domain-specific regulations are essential to ensure accurate conclusions and ethical considerations. The study of schizophasia prospects is particularly evident at the lexical, semantic, and syntactic levels, along with affective and neurophysiological variables. Keywords: language, schizophasia, speech pathology, bibliomeric analysis, formal thought disorder

Publisher

Medical University of Lublin

Reference29 articles.

1. Czernikiewicz A. Przewodnik po zaburzeniach językowych w schizofrenii, Warszawa; Instytut Psychiatrii i Neurologii: 2004.

2. Grabias S. Teoria zaburzeń mowy. Perspektywy badań, typologie zaburzeń, procedury postępowania logopedycznego, W: Grabias S, Kurkowski M. (red.) Logopedia teoria zaburzeń mowy, Lublin; UMCS: 2012: 15–73.

3. Woźniak T. Zaburzenia mowy w schizofrenii, W: Grabias S, Kurkowski M. (red.) Logopedia teoria zaburzeń mowy, Lublin; UMCS: 2012: 645-678.

4. Van Eck NJ, Waltman L. Vosviewer: A computer program for bibliometric mapping. ERIM Report Series Reference No. ERS-2009-005-LIS. 2009.

5. Waltman L, van Eck NJ. Text mining and visualization using VOSviewer. ISSI Newsletter. 2011;7(3).

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3