Experimental and theoretical investigation of the formation of the surface layer highly alloyed with aluminum

Author:

Mozhayko A. A.1,Gerashchenkov D. A.2,Staritsyn M. V.2

Affiliation:

1. NRC Kurchatov Institute – CRISM Prometey; Peter the Great St Petersburg Polytechnic University

2. NRC Kurchatov Institute – CRISM Prometey

Abstract

Laser surface treatment is a complex process in which, under the influence of a laser, the surface of material melts, while changing its structure and properties. In this paper, we consider the simulation of the process and present the results of studying the influence of laser processing parameters on the dimensions of the melt pool. The main purpose of the study is to reveal the dependence of the depth of the melt pool, namely the thickness of the layer in which the mixing process of the components takes place, on the laser parameters. As a result of the study, it was found that after laser treatment of the surface of samples with a coating thickness of 20, 40 and 80 μm at a beam speed of 100 mm/s and power of 180 W, the coating material is completely mixed with the substrate. It is also shown that with the laser travel speed 400 and 800 mm/s and the power 180 W, there is no mixing of the components in the impact zone, since the energy input is not enough.

Publisher

FSUE CRISM Prometey

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3